LHC Run Schedule (2020 - 2021)

	J	F	М	A	M	j	J	Α	S	0	N	D	J	F
LHC (3mth shift)	H	H/W c	ommis	ssionii	ng	Trai	ning	com. bean		rampu	ıp			
ALICE														
ATLAS (no NSW-C)														
ATLAS* (w/ NSW-C)														
CMS											ing wor d for H			
LHCb														

LHCb Upgrade Schedule (2020 - 2021)

Triggerless Data Acquisition

LHCb TDAQ in Run 3

40 Tb/s full detector readout @ 30 MHz (2 · 10³² cm⁻²s⁻¹)

Level-1 trigger on GPUs will reduce data rate to 1 Tb/s

Level-2 trigger on CPU will reduce data rate to 80 Gb/s

Level-1 ~traditional selective trigger, output saturated by signal. Level-2 real-time analysis reconstructs signals with offline analysis quality in real-time.

LHCb TDAQ in HL-LHC

Run at up to $1.5 \cdot 10^{34}$ cm⁻²s⁻¹, almost O(Pb/s) data rate

Processing complexity dominated by Level-2.

As single event complexity and Level-1 rate increase linearly with luminosity, overall processing cost rises quadratically.

Exploit new reconstruction algorithms (e.g. Al) or detector information (e.g. timing) to suppress pileup already at Level-1

Simulation Bottleneck

Fast(er) Simulation

- ECAL/HCAL using a point library and GAN
- PID and RICH using GANs via Lamarr
- Gaussino -> multi-threaded LHCb independent simulation framework

generation with redecay (implemented) and

forced hadronization (future)

Data Processing and Analysis

- given short timescale, detail missing here ...
- DPA now official project within LHCb

- sprucing centralized offline data selection
- analysis productions working group productions for analyses
- offline analysis tools also includes analysis packages outside LHCb
- innovative analysis prototype new techniques for mainstream adoption
- legacy software and data support for run 1 and 2